
1 
 
 10-June-2012 

 

    Overview of NeuroDreamerTM Sleep Mask Software 
 
 
The challenge in developing the 1st version of the NeuroDreamer sleep mask was to fit an 8 voice tone 
generator and synchronized light frame together with 4 songs, 2 sleep sessions,  ambient noise 
generation, and real time encoding of brainwaves into a 20Mhz 8 bit processor with 8K of ROM, 256 
bytes of RAM, an 8 cycle multiply and no sound chip. To accomplish this the firmware is entirely data 
driven via tables that have been compressed and pre-computed by an authoring system. The firmware 
might be described as a clock that does not know the time it is telling While the firmware is written in z8 
assembly language, the authoring system is written in C++. 
 
The authoring system currently compiles as a native DOS program (and can be run in a Windows 
command window) using the Watcom C++ compiler, or as a Linux console program, using the.GNU 
C++ compiler. It uses a commanf line interface, so that all user interface actions can be replicated in 
batch mode via text command files. The inputs to the authoring system  are given via command line 
switches and parameters, indirect command files,  text files that describe songs, sessions, and auxillary 
data structures, and .wav files that define one or more audio waveforms. The outputs of the authoring 
system are z8 assembler files which are then assembled together with the firmware proper to create an 
instantiation of the firmware that can be run in the NeuroDreamer sleep mask. 
 
To understand how the firmware works it is necessary to have a conceptual overview of the software 
components and algorithms that comprise a sound and light entrainment device in the abstract. The 
authoring system implements these in a full working prototype; and then uses the software objects in this 
prototype to author the tables and operating constants that drive the firmware. 



2 
 
 10-June-2012 

 

Entrainment device system diagram 
 

The central software object in the entrainment device is the binaural consort, which is composed of four 
binaural voice objects, one for each of the brainwave ranges: beta, alpha, theta, and delta. It processes 
input from song and session files, a  brainwave frequency table,  base and offset audio waveforms, a 
visual waveform, and produces audio and synchronized light output. 
 
 

 
  

 



3 
 
 10-June-2012 

 

Binaural voice diagram 
 
Binaural voice objects can be of 2 different types, a tonal voice comprised of 2 tone objects or an 
ambient noise voice comprised of a noise oscillator and an accompanying lag buffer. Each voice type 
contains a light object. 

 
 

  



4 
 
 10-June-2012 

 

 

 

Description of inputs to the entrainment device 
 

The brainwave frequency table species the frequencies for each brainwave range: beta, alpha, theta, and 
delta. These will be applied as inputs to the corresponding voices in the binaural consort. 
 
The session file is a list of records, implicitly ordered by time, describing the intensity of the brainwaves  
and how the intensity of each should vary over time. For example, an initial record of (Init 0, 20, 10, 30, 
50) means “set the initial intensity of the alpha  brainwave to 20%, the beta brainwave to 10%, the delta 
brainwave to 30%, and the theta brainwave to 50%.”  A subsequent record of (Fade 15, 5, 20, 10, 40) 
means “over the next 15 seconds fade the intensity of the alpha brainwave to 5%, the beta brainwave to 
20%, the delta brainwave to 10%, and the theta brainwave to 40%.”  . 
 
A song file is a list of variable-length records, implicitly ordered by time, describing the pitch and 
duration of a note, and which voice to ascribe it to. The pitch is described in relative terms, as the 
distance in semi-tones and micro-tones from the song tonic.There are also repeat, strain,  and loop 
records which allow for the building up of traditional song structures.. If the binaural consort employs 
noise oscillators instead of tones, the song file is ignored. 
 
An audio waveform is as an array of signed values, generally a digitized sample of an instrument 
sounding a constant note.  This sample is then digitally pre-processed  to create a seamless aural 
connection between the beginning and end of the waveform. The sample rate used to record the 
instrument, and the pitch of the note sounded by the instrument are kept as the operating constants 
sample_rate,  and original_pitch. In general there are two audio waveform inputs to the entrainment 
device, one used by base tones, and one by offset tones (as explained further down). If the binaural 
consort employs noise oscillators instead of tones, the waveforms are ignored. 
 
The visual waveform, or signal table, is an array of positive values, ranging from maximum luminosity 
to zero,  which describe a single wavelength of the visual pulse. 
 

 
 



5 
 
 10-June-2012 

 

 
 

The basic entrainment algorithm 
 

The main algorithm iterates the consort once per tick (one tick equals one moment of audio output),  
and then uses the consort’s newly iterated state values to produce an audio stream and synchronized  
light frame that pulsates at prescribed brainwave frequencies. The manner in which the audio is made 
to “pulsate” depends on whether the consort is composed of voices that employ tones, or voices that 
employ ambient noise oscillators. 
 
In the case of a binaural consort that is composed of voices that employ tones, the following method is 
used to iterate the individual voices and induce audio entrainment: 
 

The binaural voice object is used to produce a binaural beat while playing a single part in 
a four part song. Each binaural voice has an associated brainwave: alpha, beta, delta, or 
theta. 
 
The binaural voice consists of two tone objects, the Base_tone and the Offset_tone, and a 
light object. A state variable beat_frequency is set at startup to the frequency of the 
voice’s associated  brainwave. When the voice is instructed to play a given note (“A” for 
example), the pitch of the Base_tone  is set to the corresponding frequency (440 Hz), and 
the pitch of the Offset_tone is set to this frequency plus the frequency  of  the associated 
brainwave (440Hz + beat_frequency). 
 
When the part changes notes the process is repeated. 
 
Each tone mainrtains a moving index into it’s reference waveform. This index is 
incremented, with wrap, once per iteration. By changing this increment, or step, any desired 
pitch can be produced. In general: 

 
step = (sample_rate/playback_rate) * (desired_pitch/original_pitch) 

 
Since a change of pitch in a tone object consists merely in computing a new step value 
without disturbing the value of index, the note being sounded by the binaural voice can be 
freely changed without affecting the phase or continuity of the binaural beat. 
 
The Offset_tone is scaled by the current intensity of the associated brainwave, as derived 
from the ongoing processing of the session file. 



6 
 
 10-June-2012 

 

 
In the case of a binaural consort that is composed of voices that employ ambient noise oscillators, the 
following method is used to iterate the individual voices and induce audio entrainment: 
 

The binaural voice object is used to phase shift a noise source at an associated brainwave 
frequency: alpha, beta, delta, or theta.  The voice object maintains a state variable 
bw_cycle_position, which is updated in such a way that it oscillates from 1.0 to –1.0 and 
back, in the period of one wavelength of the brainwave. 
 
Within the voice object there is a random noise oscillator (in this case a brownian 
oscillator), a circular buffer of prior oscillator values (the lag buffer), and a light object. 
 
On each iteration a new value for the noise oscillator is calculated and saved. For a 
brownian oscillator this is done by adding a pseudo-random value (constrained to lie 
within a certain range) to the last value of the oscillator. The last value of the oscillator is 
saved in the lag buffer and the buffer’s head/tail indices are updated.  The 
bw_cycle_position is then consulted. If it is  positive the current value of the oscillator is 
output to the left audio channel; if it is negative the current value is output to the right 
audio channel. The absolute value of bw_cycle_position is then multipled by the length of 
the lag buffer, and scaled by the current intensity of the associated brainwave frequency. 
This is then used as a relative index from the head of the lag buffer, the value at that 
index in the lag buffer is fetched and output to the opposite audio channel from that in 
which the current oscillator value was output. This acheives a phase shift at the 
brainwave frequency and intensity. 
 

 

 
Both types of binaural voices contain a light object. This object mainains state information used to 
pulsate a light regularly at the rate of its associated brainwave frequency. It does this by referencing a 
signal table of values giving the amplitude at each point for one wavelength of a light pulse, with an 
index which is incremented each iteration by step.  The value of step is initially calculated from the 
brainwave frequency associated with the light object, and insures that  the signal table will be traversed 
once per brainwave period. The value of the signal table element, once scaled by the current intensity of 
the associated brainwave, is considered to be an illumination percentage, which is converted into a 
pulse-width value and used to drive the Light Object’s respective LED in the Light Frame. 

 
 
 
 
 



7 
 
 10-June-2012 

 

                        Description of the firmware 
 
 
The z8 firmware can be viewed structurally as a foreground task loop, an ISR, and a number of 
semaphores which help off-load the processing of non time-critical  events to the foreground. The 
“meat” of the firmware exists in the ISR, which runs at the audio rate, and is responsible for iterating the 
consort, producing the instantaneous audio and LED values, maintaining the timing of periodic update 
events, processing song events, and initiating the parsing of session records. Because there is not enough 
RAM to buffer output this is all done in real time – the audio rate is only as good as the worst case ISR. 
To mitigate the worst case ISR an event deferral mechanism is implemented for distributing the 
processing of simultaneous and time-consuming song and session events amongst consecutive ISRs.  
 
The algorithmic processing of the session table is the same for both tone sequences and ambient noise 
sequences.  A session table is comprised of variable length records and is generated by the authoring 
system from a text desciptor file. These records are of various types, and control the activity and 
duration of the sequence. For purposes of this overview we will discuss only two record types: HOLD, 
and FADE. . The firmware maintains a down-counter, denominated in seconds,  which indcates when 
the next session record should be processed. A HOLD record, when processed, will bump this counter 
by a specified number. A FADE record, when processed, will cause the firmware to incrementally alter   
the intensity of one or more brainwaves by given amounts over a given number of updates, and also 
bump the down-counter. The incremental amounts in the FADE record are pre-computed by the 
authoring system and are a function of  the intensities for the brainwaves as given in the original text 
desciptor records, and the fade update rate, as configured via the authoring sytem. For example, if the 
original text descriptor for a session record  was ‘FADE 20 15”  (which means “Fade over  20 seconds 
the beta brainwave from it’s current intensity level to a 15% intensity level”),. and the current intensity 
of the beta brainwave was 2%, then the authoring system would have pre-computed an incremental fade 
value of (15-2) / (20*fade_update_rate)  One of the tasks in the firmware task loop is to update ongoing 
fades at the fade_update_rate. The periodicity is maintained via a semaphore initiated by the ISR. 
 
The algorithmic control of the LEDs is the same for both tone sequences and ambient noise sequences. 
An led update rate is specified via the authoring system and is uniform throughout all sequences for any 
given instantiation of the firmware. A led signal table, or waveform, can be specified for each LED.  
This defines the shape of the visual pulse. It is a table of values giving the amplitude at each point for 
one wavelength of the LED signal.  The number of points comprising a single wavelength is 
configurable via the authoring system. For best results, a sine or triangle waveform should be used. 
During the playing of a sequence the firmware maintains a moving index into each LED signal table. 
This index is incremented (at the led update rate),  with wrap, by a led step value which has been pre-
calculated by the authoring system to traverse the signal table once per the associated brainwave period. 
This lookup value is scaled by the current intensity of the associated brainwave (as derived via session 
table procesiing), and then by the global LED intensity coefficient (which changes depending on the 
user-selected light level.)  This final value is then used to pulse-width modulate a GPIO pin configured 
to drive an LED 



8 
 
 10-June-2012 

 

 
Audio for tone seqeunces is computed in the ISR by iterating the base and offset tones of each voice in 
the manner described in the section on the entrainment device. The main difference between the 
algorithms in the firmware and the authoring system (which implements a general entrainment device) 
lies in the processing of note records within the song table.  In the case of the authoring system, each 
note record in a song table contains fields defining it’s relative pitch, in semi-tones and micro-tones, 
from the song tonic. The resulting step values to be added to the index into the associated waveform are 
computed in real time. In the case of the firmware, the note record fields defining relative pitch have 
been replaced by a single field, pre-calculated by the authoring system, which gives the step value itself 
These step values are loaded into the tone structures directly from the song table as this table is 
processed in the ISR. 
 
Audio for ambient noise seqeunces is computed in the ISR by first iterating each brown noise oscillator 
in the manner described in the section on the entrainment device.  The phase shift (or lag between audio 
channels) for each oscillator is determined by subtracting  the current index  into the LED signal table of 
the associated LED from half the period of the LED signal table, and multiplying this value by the 
current intensity of the associated brainwave.   
 
For tone sequences, an ADSR amplitude envelope can be applied to voice 0. This envelope can only be 
applied if there is no brainwave activity assigned to that voice  throughout the sequence. By applying an 
ADSR envelope to voice 0 it is possible to add rhythmic texture to a sequence. The ADSR envelope 
parameters are specified via the authoring system..  
 
The firmware task loop contains a task which senses when the battery charger is plugged in or out. In the 
production version, the sleep mask is turned off if the battery charger is sensed as being plugged in for ½ 
second or longer. 
 
The firmware contains an optional diagnostics mode. In the production version this mode is invoked at 
power-on reset (when the battery charger is plugged in to recharge a “dead” battery). In this mode the 
LEDs are turned on and off in the order blue, green, yellow, and red. Then a tone is played momentarily 
first in the left ear, then in the right ear.. A firmware loop then follows, allowing the user to press 
buttons at will, resulting in different colored LEDs being turned on as follows:  the red LED is turned on 
while the top button is pressed, the yellow LED is turned on while the middle button is pressed, the 
green LED is turned on while the bottom button pressed. The loop times out after no buttons have been 
pressed for several seconds.  The diagnostics mode provides a built-in capability to trouble-shoot 
possible hardware issues. 
 
The firmware supports two different user interface paradigms: one-touch and multi-touch. Under the 
one-touch paradigm all sequences are assigned to the top user button, the volume intensity is controlled 
by the middle user button, and the light intensity is controlled by the lower button. The top button also 
controls turning off the mask (this is the implicit functionality of the button once the last sequence has 
been reached). Under the multi-touch user interface paradigm, the simultaneous pressing of multiple 
buttons can be defined as a single user interface event. The programmer can assign sequences, 
light/volume adjustments, and mask off  functionality to different buttons, or button combinations, The 
choice of user interface paradigm, and the specification of custom button semantics when using the 
multi-touch paradigm is configurable via the authoring system.  The production version of the firmware 
uses the one-touch paradigm. 


